职业与健康 ›› 2025, Vol. 41 ›› Issue (14): 1930-1935.

• 论著 • 上一篇    下一篇

乌鲁木齐市职业人群心理健康的影响因素及风险预测模型构建

刘梦婷, 孙璟琦, 宁丽, 姜晶, 高晓燕   

  1. 1.新疆医科大学公共卫生学院,新疆 乌鲁木齐 830000;
    2.新疆美年大健康管理有限公司医疗管理部,新疆 乌鲁木齐 83000
  • 收稿日期:2024-09-29 修回日期:2024-10-21 出版日期:2025-07-15 发布日期:2025-12-12
  • 通信作者: 高晓燕,副教授,E-mail:15199142607@163.com
  • 作者简介:刘梦婷,女,在读硕士研究生,研究方向为职业紧张与健康。
  • 基金资助:
    国家自然科学基金面上项目(2023D01C47)

Influencing factors and risk prediction model construction of mental health of occupational population in Urumqi

LIU Mengting, SUN Jingqi, NING Li, JIANG Jing, GAO Xiaoyan   

  1. 1. School of Public Health,Xinjiang Medical University,Urumqi,Xinjiang 830000,China;
    2. Medical Management Department,Xinjiang Meinian University Health Management Co.,Ltd,Urumqi,Xinjiang 830000, China
  • Received:2024-09-29 Revised:2024-10-21 Online:2025-07-15 Published:2025-12-12
  • Contact: GAO Xiaoyan,Associate professor,E-mail:15199142607@163.com

摘要: 目的 了解乌鲁木齐市职业人群心理健康状况,构建风险预测列线图模型,为采取针对性的促进职业人群心理健康措施提供参考。方法 采用整群抽样的方法于2021年4—12月抽取新疆乌鲁木齐市职业人群作为研究对象,使用一般资料调查表、付出-回报失衡量表(effort-reward imbalanc,ERI)、匹兹堡睡眠质量指数(Pittsburgh sleep quality index,PSQI)、心理健康症状自评量表(symptom check list-90,SCL-90)进行问卷调查。使用Pearson相关分析ERI与PSQI量表得分的相关性,采用单因素logistic回归和多因素logistic回归筛选出职业人群心理健康的相关危险因素。基于多因素logistic回归结果建立列线图,利用被调查者工作特征(receiver operating characteristic,ROC)曲线下面积(area under the ROC curve,AUC),校准曲线和决策曲线分析(decision curve analysis,DCA)评估预测能力。本次共发放问卷2 000份,有效回收问卷1 863份,回收率为93.15%。结果 1 863名乌鲁木齐市职业人群中心理健康阳性772人,发病率为41.4%。ERI和PSQI总分及各维度之间除睡眠效率、回报维度之外,其他维度均呈正相关(r=0.125~0.350,均P<0.01)。单因素logistic回归、多因素logistic回归分析显示,婚姻状况(OR=2.455,95%CI=0.960~6.276)、从事职业(OR=1.915,95%CI=1.096~3.346)、月收入(OR=5.127,95%CI=2.211~11.887)、吸烟(OR=1.497,95%CI=1.097~2.041)、工作压力(OR=1.897,95%CI=1.538~2.340)、睡眠质量问题(OR=4.119,95%CI =3.332~5.092)均是职业人群心理健康的危险因素(均P<0.05)。ROC曲线分析显示,AUC为0.737(95%CI=0.654~0.702),使用Bootstrap法对模型进行验证,经1 000次自抽样,校正C-index指数为0.9,结果显示,该列线图模型预测职业人群心理健康状态发生率与实际发生率基本一致,可用于预测,DCA决策曲线显示该模型有较好的适用性。结论 职业人群心理健康状态主要受婚姻状况、从事职业、月收入、吸烟、工作压力和睡眠质量问题等因素的影响。本研究构建的列线图模型在预测职业人群心理健康状态方面具有较高的准确性和鉴别性。

关键词: 乌鲁木齐, 职业人群, 心理健康, 列线图

Abstract: Objective To understand the mental health status of the occupational population in Urumqi,construct a risk prediction column chart model,and provide reference for the adoption of targeted measures to promote the mental health of the occupational population. Methods The occupational population of Urumqi in Xinjiang was sampled from April to December 2021 using cluster sampling as the study population. The questionnaires were administered using the general information questionnaire,the effort-reward imbalance(ERI),the Pittsburgh sleep quality index(PSQI),and the symptom checklist-90(SCL-90). The Pearson analysis was used to analyze the correlations between ERI and PSQI scale scores,and the univariate logistic regression and multivariate logistic regression were used to screen out the risk factors related to mental health in the occupational population. A column chart was established based on multivariate logistic regression results. The predictive ability was assessed using the area under the curve(AUC) of the subjects' work characteristics(ROC),calibration curves and decision curve analysis(DCA). A total of 2 000 questionnaires were distributed,and 1 863 questionnaires were validly recovered,with a response rate of 93.15%. Results Among 1 863 occupational population of Urumqi,790 were positive for mental health,with a prevalence rate of 42.4%. Except for the sleep efficiency dimension and the return dimension,the total scores and the remaining dimensions of ERI and PSQI showed positive correlations(r=0.125-0.350,all P<0.01). Based on the univariate logistic regression and multivariate logistic regression showed that marital status(OR=2.455,95%CI=0.960-6.276),engaged in occupation(OR=1.915,95%CI=1.096-3.346),monthly income(OR=5.127,95%CI=2.211-11.887),smoking(OR=1.497,95%CI=1.097-2.041),work stress(OR=1.897,95%CI=1.538-2.340) and sleep quality problems(OR=4.119,95%CI=3.332-5.092) were the independent risk factors for mental health in the occupational population(all P<0.05). The analysis of the ROC curve showed that the AUC was 0.737(95%CI=0.654-0.702). The model was validated using the Bootstrap method with 1 000 self-samples and a corrected C-index index of 0.9. The results showed that this column chart model predicted that the incidence of mental health status in occupational populations was basically the same as the actual incidence,and it could be used for clinical prediction. The DCA decision curve showed that the model has good clinical applicability. Conclusions The mental health status of occupational groups is mainly affected by factors such as marital status,occupation,monthly income,smoking,work pressure,and sleep quality problems. The column chart model constructed in this study has high accuracy and discriminative power in predicting the mental health status of occupational groups.

Key words: Urumqi, Occupational population, Mental health, Column charts

中图分类号: