职业与健康 ›› 2025, Vol. 41 ›› Issue (18): 2564-2570.

• 论著 • 上一篇    下一篇

急性高原病风险预测模型的系统评价

商昳婧1a,2, 杨孝光1a, 路强1b, 裴家兴1a,2, 周鹏飞1c, 李运明1a,2   

  1. 1.西部战区总医院a医疗保障中心医学信息数据室,b医疗保障中心信息科,c卫生经济科,四川 成都 610083;
    2.西南医科大学公共卫生学院,四川 泸州 646000
  • 收稿日期:2025-01-05 修回日期:2025-01-20 出版日期:2025-09-15 发布日期:2025-12-13
  • 通信作者: 李运明,副主任技师,E-mail:lee3082@sina.com
  • 作者简介:商昳婧,女,在读硕士研究生,研究方向为流行病与卫生统计学。
  • 基金资助:
    四川省中医药管理局中医药科研专项(25MSZX477, 25MSZX495)

Risk prediction models for acute mountain sickness:a systematic review

SHANG Yijing1a,2, YANG Xiaoguang1a, LU Qiang1b, PEI Jiaxing1a,2, ZHOU Pengfei1c, LI Yunming1a,2   

  1. 1. a Office of Medical Information and Data Medical Support Center,b Department of Information,Medical Support Center,c Department of Health Economics,General Hospital of Western Theater Command of PLA,Chengdu,Sichuan 610083,China;
    2. School of Public Health,Southwest Medical University,Luzhou,Sichuan 646000,China
  • Received:2025-01-05 Revised:2025-01-20 Online:2025-09-15 Published:2025-12-13
  • Contact: LI Yunming,Deputy chief technician,E-mail:lee3082@sina.com

摘要: 目的 系统评价急性高原病风险预测模型,了解模型的偏倚风险和适用范围。方法 检索中国知网、维普、万方、Web of Science、Ovid MEDLINE、PubMed、Embase数据库,收集急性高原病风险预测模型相关研究,检索时限均为建库至2024年3月;由2位研究者独立筛选文献并提取数据,采用预测模型偏倚风险评估工具(prediction model risk of bias assessment tool,PROBAST)评价模型的偏倚风险和适用性。结果 共纳入20篇文献,包括27个急性高原病风险预测模型。纳入研究的预测模型AUC为0.593~0.986,研究的样本量为32~4 369例,预测因子数量为1~22个。61.9%的研究仅建立模型但未进行验证,90.5%的研究未进行外部验证,所报告的模型灵敏度范围为0.611~0.998。结论 急性高原病风险预测模型预测性能整体较差,且均存在高偏倚风险,半数研究存在适用性不足的风险。

关键词: 急性高原病, 预测模型, 系统评价, 预测性能, 预测模型偏倚风险评估工具

Abstract: Objective To systematically evaluate the risk prediction model of acute altitude sickness,understand the bias risk of and application scope of the model. Methods The CNKI,VIP,WanFang,Web of Science,Ovid MEDLINE,PubMed,and Embase databases were electronically searched to collect studies related to the risk prediction model of acute mountain sickness,and the time frame of the search was from the establishment of the database to March 2024. Two researchers independently screened literature and extracted data,and the risk of bias assessment tool for prediction models( PROBAST) was used to evaluate the risk of bias and applicability of the models. Results A total of 20 papers were included,including 27 prediction models for acute altitude illness. The AUCs of the predictive models included in the studies were 0.593-0.986,the sample sizes of the studies were 32-4 369 cases,and the number of predictors was 1-22.61.9% of the studies were modeled only without internal validation,and 90.5% of the studies were not externally validated. The reported model sensitivity ranged from 0.611 to 0.998. Conclusion The overall predictive performance of the acute altitude sickness risk prediction model is poor,and all included studies have a high risk of bias,and half of the studies have a high risk of applicability.

Key words: Acute mountain sickness, Prediction model, Systematic review, Prediction performance, Prediction model risk of bias assessment tool

中图分类号: