职业与健康 ›› 2025, Vol. 41 ›› Issue (17): 2370-2377.

• 论著 • 上一篇    下一篇

2017—2023年盐城市气象因素与呼吸系统疾病死亡的时间序列分析

蔡伟1, 王瑞1, 赵鹏1, 梁季2, 吴玲玲2, 刘付东2   

  1. 1.盐城市滨海县疾病预防控制中心慢性非传染性疾病预防控制科,江苏 盐城 224500;
    2.盐城市疾病预防控制中心慢性非传染性疾病预防控制科,江苏 盐城 224100
  • 收稿日期:2025-01-02 修回日期:2025-01-15 出版日期:2025-09-01 发布日期:2025-12-13
  • 通信作者: 刘付东,副主任医师,E-mail:250090782@qq.com
  • 作者简介:蔡伟,男,主管医师,主要从事死因监测工作。
  • 基金资助:
    盐城市科技项目(YK2021033)

Time series analysis of meteorological factors and respiratory disease mortality in Yancheng City from 2017 to 2023

CAI Wei1, WANG Rui1, ZHAO Peng1, LIANG Ji2, WU Lingling2, LIU Fudong2   

  1. 1. Department of Chronic Non-communicable Disease Prevention and Control,Yancheng Binhai County Center for Disease Control and Prevention,Yangcheng,Jiangsu 224500,China;
    2. Department of Chronic Non-communicable Disease Prevention and Control,Yancheng Center for Disease Control and Prevention,Yancheng,Jiangsu 224100,China
  • Received:2025-01-02 Revised:2025-01-15 Online:2025-09-01 Published:2025-12-13
  • Contact: LIU Fudong,Associate chief physician,E-mail:250090782@qq.com

摘要: 目的 分析环境气温对盐城市逐日呼吸系统疾病死亡的影响,为降低人群死亡风险提供依据。方法 收集2017—2023年盐城市气象资料和呼吸系统疾病人群死亡数据,并基于R软件的分布滞后非线性模型对日均气温和呼吸系统疾病人群死亡数据进行时间滞后效应和归因风险分析。结果 2017—2023年盐城市环境气温与日呼吸系统疾病死亡人数暴露-反应曲线呈倒“J”型,最适温度为24 ℃,低温和高温引起死亡风险增加,高温表现为急性效应,滞后持续时间较短,低温作用较为缓慢,滞后时间持续较长。呼吸系统疾病人群极端低温(-1 ℃)暴露在滞后2 d开始出现死亡冷效应,相对危险度(relative risk,RR)为1.12(95%CI:1.06~1.19),滞后效应持续存在;极端高温(30 ℃)暴露当天出现死亡热效应,RR为1.22(95%CI:1.14~1.30),滞后效应持续3 d,其中0~<65岁组人群在滞后5 d出现死亡冷效应,滞后效应持续5 d,在滞后1 d出现死亡热效应,滞后效应持续3 d。呼吸系统疾病人群在暴露当天日均气温越高引起的累积死亡风险越大,累积最大风险RR 为1.50(95%CI:1.31~1.72),在0~3 d滞后期内表现为最适温度开始,日均气温越高引起的累积死亡风险越大,累积最大风险RR为2.61(95%CI:2.24~3.04)。最高温时0~7 d累积风险最大,RR分别为2.79(95%CI:2.33~3.33),最低温时0~14 d累积风险最大,RR为4.92(95%CI:3.03~7.99),最低温时0~21 d累积风险最大,RR为7.35(95%CI:3.98~13.58)。呼吸系统疾病人群在极端低温(-1 ℃)暴露滞后0~21 d的冷效应最大,RR为4.49(95%CI:3.45~6.65),极端高温(30 ℃)暴露滞后0~7 d的累积热效应最大,RR为1.54(95%CI:1.42~1.68),0~<65岁组人群在极端高温(30 ℃)暴露0~7 d的累积热效应最大,RR为2.13(95%CI:1.38~3.26)。因环境气温暴露导致死亡的归因分值为44.10%,人群死亡归因人数为28 683人,其中低温暴露导致死亡的归因分值为4.92%,人群死亡归因人数为3 202人,高温暴露导致死亡的归因分值为1.73%,人群死亡归因人数为1 123人,低温和高温暴露导致死亡的累积归因风险较低。结论 2017—2023年盐城市环境气温对逐日呼吸系统疾病人群死亡存在滞后影响,应针对高危人群提前做好监测预警,以降低环境气温变化对人群死亡风险的影响。

关键词: 气温, 呼吸系统疾病, 死亡, 分布滞后非线性模型

Abstract: Objective To analyze the impact of environmental temperature on daily respiratory disease mortality in Yancheng City,and provide evidence for reducing population mortality risk. Methods Meteorological data and respiratory disease mortality data for the population in Yancheng City from 2017 to 2023 were collected. The distributed lag non-linear model(DLNM) in R software was used to analyze the time-lagged effects and attributable risks of daily average temperature on respiratory disease mortality. Results From 2017 to 2023,the exposure-response curve between environmental temperature and daily respiratory disease mortality in Yancheng City showed an inverted "J" shape,with the optimal temperature at 24 ℃. Both low and high temperatures increased the risk of death,with high temperatures exhibiting acute effects and a shorter lag duration,while low temperatures had a slower onset and a longer lag duration. For the population with respiratory diseases,exposure to extreme low temperature(-1 ℃) began to show a cold effect after a 2-day lag,the relative risk(RR) was 1.12(95%CI:1.06-1.19),and the lag effect persisted. Exposure to extreme high temperature(30 ℃) showed a heat effect on the day of exposure,with an RR of 1.22(95%CI:1.14-1.30),and the lag effect lasted for 3 days. For the 0-<65 years age group,the cold effect appeared after a 5-day lag,lasting for 5 days,and the heat effect appeared after a 1-day lag and lasted for 3 days. The higher the daily average temperature on the day of exposure,the greater the cumulative mortality risk for the population with respiratory diseases,with a cumulative maximum risk RR of 1.50(95%CI:1.31-1.72). In the 0-3 day lag period,the higher the daily average temperature above the optimal temperature,the greater the cumulative mortality risk,with a cumulative maximum risk RR of 2.61(95%CI:2.24-3.04). The maximum cumulative risk in the 0-7 day lag period occurred at the highest temperature,with an RR of 2.79(95%CI:2.33-3.33). The maximum cumulative risk in the 0-14 day lag period occurred at the lowest temperature,with an RR of 4.92(95%CI:3.03-7.99). The maximum cumulative risk in the 0-21 day lag period also occurred at the lowest temperature,with an RR of 7.35(95%CI:3.98-13.58). Exposure to extreme low temperature(-1 ℃) over the 0-21 day lag period showed the maximum cold effect,with an RR of 4.49(95%CI:3.45-6.65). Exposure to extreme high temperature(30 ℃) over the 0-7 day lag period showed the maximum cumulative heat effect,with an RR of 1.54(95%CI:1.42-1.68). The cumulative heat effect of the 0-<65 age group exposed to extreme high temperatures(30 ℃) for 0-7 days was the greatest,with an RR of 2.13(95%CI:1.38-3.26). The attributable fraction of deaths due to environmental temperature exposure was 44.10%,with 28 683 attributed deaths. Among these,the attributable fraction of deaths due to low temperature exposure was 4.92%,with 3 202 attributed deaths,and the attributable fraction of deaths due to high temperature exposure was 1.73%,with 1 123 attributed deaths. The cumulative attributable risk of both low and high temperature exposures was relatively low. Conclusion From 2017 to 2023,environmental temperature in Yancheng City had a lagged effect on daily respiratory disease mortality. Early monitoring and warning for high-risk populations should be implemented to reduce the impact of environmental temperature changes on population mortality risk.

Key words: Atmospheric temperature, Respiratory diseases, Mortality, Distributed lag nonlinear model

中图分类号: